首页> 外文OA文献 >An Interpolating Sequent Calculus for Quantifier-Free Presburger Arithmetic.
【2h】

An Interpolating Sequent Calculus for Quantifier-Free Presburger Arithmetic.

机译:无量化器的Presburger算法的插值后续演算。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Craig interpolation has become a versatile tool in formal verification, used for instance to generate program assertions that serve as candidates for loop invariants. In this paper, we consider Craig interpolation for quantifier-free Presburger arithmetic (QFPA). Until recently, quantifier elimination was the only available interpolation method for this theory, which is, however, known to be potentially costly and inflexible. We introduce an interpolation approach based on a sequent calculus for QFPA that determines interpolants by annotating the steps of an unsatisfiability proof with partial interpolants. We prove our calculus to be sound and complete. We have extended the Princess theorem prover to generate interpolating proofs, and applied it to a large number of publicly available Presburger arithmetic benchmarks. The results document the robustness and efficiency of our interpolation procedure. Finally, we compare the procedure against alternative interpolation methods, both for QFPA and linear rational arithmetic. © 2011 Springer Science+Business Media B.V.
机译:Craig插值已成为形式验证中的通用工具,例如用于生成程序断言,以用作循环不变式的候选者。在本文中,我们考虑将克雷格插值用于无量词的Presburger算法(QFPA)。直到最近,量词消除还是该理论唯一可用的插值方法,但是,众所周知,这种方法可能代价高昂且缺乏灵活性。我们针对QFPA引入了基于顺序演算的插值方法,该方法通过使用部分插值来注释不满足证明的步骤来确定插值。我们证明我们的演算是正确和完整的。我们扩展了公主定理证明者以生成插值证明,并将其应用于大量公开可用的Presburger算术基准。结果证明了我们插值过程的鲁棒性和效率。最后,我们针对QFPA和线性有理算术,将程序与替代插值方法进行比较。 ©2011 Springer Science + Business Media B.V.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号